PumasEMModel-Error models
using PumasThe error models in a PumasEMModel implicitly define the dispersion parameters based on the provided distribution. The general syntax is
    @error begin
        dv ~ ProportionalNormal(μ)
    endWhere dv is the observed variable, and μ the expectation, specified in an earlier block. All currently supported error models follow the observed ~ Distribution(expectation) syntax. When specifying inits, add a σ field to the named tuple with one element per observed variable. Each element should itself be a tuple with a Float64 per parameter in the error model. For example, given
    @error begin
        dv1 ~ ProportionalNormal(cp1) # parameterized by 1 dispersion parameter
        dv2 ~ CombinedNormal(cp2) # parameterized by 2 dispersion parameters
    endone may, specify inits of the form σ = ((2.0,), (0.9, 0.5)), where 2.0 is the standard deviation parameter for dv1 and 0.9, 0.5 are the parameters for dv2, in this case corresponding to the additive and proportional standard deviations of the combined normal error model. It is not necessary to initialize σ when fitting; if unspecified, each element is initialized to 1.0.
It is recommended to use initial values larger than you estimate the true value of σ to be while fitting to assist exploration and escape from local minimum.
Gaussian models
Additive Normal
    @error begin
        Y ~ Normal(μ)
    endIndicates that Y ~ Normal(μ, σ).
Proportional Normal
    @error begin
        Y ~ ProportionalNormal(μ)
    endIndicates that Y ~ Normal(μ, abs(μ)*σ).
Combined Normal
    @error begin
        Y ~ CombinedNormal(μ)
    endIndicates that Y ~ Normal(μ, √(σₐ² + μ²*σₚ²)).
Log Normal
    @error begin
        Y ~ LogNormal(μ)
    endIndicates that Y ~ LogNormal(μ, σ).
0-Dispersion-Parameter models
Bernoulli
    @error begin
        Y ~ Bernoulli(μ)
    endIndicates that Y ~ Bernoulli(μ).
Bernoulli Logit
    @error begin
        Y ~ BernoulliLogit(μ)
    endIndicates that Y ~ Bernoulli( 1 /(1 + exp(-μ)) ).
Exponential
    @error begin
        Y ~ Exponential(μ)
    endIndicates that Y ~ Exponential(μ).
Poisson
    @error begin
        Y ~ Poisson(μ)
    endIndicates that Y ~ Poisson(μ).
1-Dispersion-Parameter models
Beta
    @error begin
        Y ~ Beta(μ)
    endIndicates that Y ~ Beta(μ * 10/σ, (1 - μ) * 10/σ).
Gamma
    @error begin
        Y ~ Gamma(μ)
    endIndicates that Y ~ Gamma( 1 / σ², μ * σ² ).
Summary of Error Models
| Data | Model | Derived Block Expression | Distribution | # Dispersion Parameters | 
|---|---|---|---|---|
| Continuous | 1 | |||
| Normal-Additive | y ~ Normal(μ) | y ~ Normal(μ, σ) | 1 | |
| Normal-Proportional | y ~ ProportionalNormal(μ) | y ~ Normal(μ, abs(μ)*σ) | 1 | |
| Normal-Additive & Proportional | y ~ CombinedNormal(μ) | y ~ Normal(μ, √(σ_add^2 + (μ*σ_prop)^2)) | 2 | |
| Log-Normal | y ~ LogNormal(μ, σ) | y ~ LogNormal(μ, σ) | 1 | |
| Exponential | y ~ Exponential(μ) | y ~ Exponential(μ) | 0 | |
| Beta | y ~ Beta(μ) | y ~ Beta(μ * 10/σ, (1 - μ) * 10/σ) | 1 | |
| Gamma | y ~ Gamma(μ) | y ~ Gamma(inv(abs2(σ)), μ*abs2(σ)) | 1 | |
| Discrete | ||||
| Bernoulli | y ~ Bernoulli(μ) | y ~ Bernoulli(μ) | 0 | |
| Bernoulli-Logit | y ~ BernoulliLogit(μ) | y ~ Bernoulli(1/(1+exp(-μ))) | 0 | |
| Poisson | y ~ Poisson(μ) | y ~ Poisson(μ) | 0 |